Nuprl Lemma : es-interface-val_wf2 11,40

es:ES, A:Type, X:AbsInterface(A), e:E(X). X(e A 
latex


Definitionss = t, t  T, x:AB(x), x:AB(x), b, ES, Type, AbsInterface(A), E, True, T, Dec(P), P  Q, x:A  B(x), x:AB(x), b | a, a ~ b, a  b, a <p b, a < b, A c B, f(a), x f y, xLP(x), (xL.P(x)), r  s, r < s, q-rel(r;x), Outcome, (x  l), l_disjoint(T;l1;l2), (e <loc e'), e loc e' , (e < e'), e c e', e<e'.P(e), ee'.P(e), e<e'P(e), ee'.P(e), e[e1,e2).P(e), e[e1,e2).P(e), e[e1,e2].P(e), e[e1,e2].P(e), e(e1,e2].P(e), SqStable(P), P & Q, P  Q, A, a =!x:TQ(x), InvFuns(A;B;f;g), Inj(A;B;f), IsEqFun(T;eq), Refl(T;x,y.E(x;y)), Sym(T;x,y.E(x;y)), Trans(T;x,y.E(x;y)), AntiSym(T;x,y.R(x;y)), Connex(T;x,y.R(x;y)), CoPrime(a,b), Ident(T;op;id), Assoc(T;op), Comm(T;op), Inverse(T;op;id;inv), BiLinear(T;pl;tm), IsBilinear(A;B;C;+a;+b;+c;f), IsAction(A;x;e;S;f), Dist1op2opLR(A;1op;2op), fun_thru_1op(A;B;opa;opb;f), FunThru2op(A;B;opa;opb;f), Cancel(T;S;op), monot(T;x,y.R(x;y);f), IsMonoid(T;op;id), IsGroup(T;op;id;inv), IsMonHom{M1,M2}(f), a  b, IsIntegDom(r), IsPrimeIdeal(R;P), strong-subtype(A;B), f  g, {x:AB(x)} , E(X), EState(T), a:A fp B(a), Id, , EqDecider(T), Unit, left + right, IdLnk, EOrderAxioms(Epred?info), kindcase(ka.f(a); l,t.g(l;t) ), Knd, loc(e), kind(e), Msg(M), type List, , val-axiom(E;V;M;info;pred?;init;Trans;Choose;Send;val;time), e < e', , constant_function(f;A;B), SWellFounded(R(x;y)), , pred!(e;e'), x,yt(x;y), <ab>, pred(e), first(e), xt(x), Top, let x,y = A in B(x;y), t.1, X(e)
Lemmasevent system wf, es-interface wf, es-interface-val wf, es-E wf, es-E-interface wf, deq wf, EOrderAxioms wf, IdLnk wf, Msg wf, unit wf, nat wf, val-axiom wf, qle wf, cless wf, bool wf, top wf, Knd wf, kindcase wf, constant function wf, not wf, loc wf, pred! wf, strongwellfounded wf, member wf, rationals wf, Id wf, EState wf, subtype rel wf, sq stable from decidable, decidable assert, assert wf

origin