Definitions | s = t, t T, x:AB(x), x:A. B(x), b, ES, Type, AbsInterface(A), E, True, T, Dec(P), P Q, x:A B(x), x:A. B(x), b | a, a ~ b, a b, a <p b, a < b, A c B, f(a), x f y, xL. P(x), (xL.P(x)), r s, r < s, q-rel(r;x), Outcome, (x l), l_disjoint(T;l1;l2), (e <loc e'), e loc e' , (e < e'), e c e', e<e'.P(e), ee'.P(e), e<e'. P(e), ee'.P(e), e[e1,e2).P(e), e[e1,e2).P(e), e[e1,e2].P(e), e[e1,e2].P(e), e(e1,e2].P(e), SqStable(P), P & Q, P Q, A, a =!x:T. Q(x), InvFuns(A;B;f;g), Inj(A;B;f), IsEqFun(T;eq), Refl(T;x,y.E(x;y)), Sym(T;x,y.E(x;y)), Trans(T;x,y.E(x;y)), AntiSym(T;x,y.R(x;y)), Connex(T;x,y.R(x;y)), CoPrime(a,b), Ident(T;op;id), Assoc(T;op), Comm(T;op), Inverse(T;op;id;inv), BiLinear(T;pl;tm), IsBilinear(A;B;C;+a;+b;+c;f), IsAction(A;x;e;S;f), Dist1op2opLR(A;1op;2op), fun_thru_1op(A;B;opa;opb;f), FunThru2op(A;B;opa;opb;f), Cancel(T;S;op), monot(T;x,y.R(x;y);f), IsMonoid(T;op;id), IsGroup(T;op;id;inv), IsMonHom{M1,M2}(f), a b, IsIntegDom(r), IsPrimeIdeal(R;P), strong-subtype(A;B), f g, {x:A| B(x)} , E(X), EState(T), a:A fp B(a), Id, , EqDecider(T), Unit, left + right, IdLnk, EOrderAxioms(E; pred?; info), kindcase(k; a.f(a); l,t.g(l;t) ), Knd, loc(e), kind(e), Msg(M), type List, , val-axiom(E;V;M;info;pred?;init;Trans;Choose;Send;val;time), e < e', , constant_function(f;A;B), SWellFounded(R(x;y)), , pred!(e;e'), x,y. t(x;y), <a, b>, pred(e), first(e), x. t(x), Top, let x,y = A in B(x;y), t.1, X(e) |